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Abstract

In this study, we describe the recent changes entribpospheric ozone gPcolumns (TOCs)
measured by the Infrared Atmospheric Soundingfietemeter (IASI) onboard the Metop satellite
during the first 9 years of the IASI operation @ary 2008 to May 2017). Using appropriate
multivariate regression methods, we discriminagmificant linear trends from other sources of
Os variations captured by IASI. The geographical gratt of the adjustedsG@rends are provided
and discussed on the global scale. Given the laogdribution of the natural variability in
comparison with that of the trend (25-8%%il5- 50%, respectively) to the tota @ariations, we
estimate that additional years of IASI measuremaregyenerally required to detect the estimated
Os trends with a high precision. Globally, additiortalmonths to 6 years of measurements,
depending on the regions and the seasons, arechézdietect a trend of |5| DU/decade. An
exception is interestingly found during summerhia mid-high latitudes of the North Hemisphere
(N.H.; ~ 40°N-75°N) where the large absolute fitteend values (~|0.5] DU/yr on average)
combined with the small model residuals (~10%)valtbe detection of a band-like pattern of
significant negative trends. This finding suppahts reported decrease ir @recursor emissions

in recent years, especially in Europe and US. Tiliénce of continental pollution on that
latitudinal band is further investigated and supgbby the analysis of thes@O relationship (in
terms of correlation coefficient, regression slapd covariance) that we found to be the strongest
at the northern mid-latitudes in summer.

1 Introduction

Os plays a key role throughout the whole tropospherere it is produced by the photochemical
oxidation of carbon monoxide (CO), non-methane telarganic compounds (NMVOCs) and
methane (Ch) in the presence of nitrogen oxides (N@.g. Logan et al., 1981).3@ources in

the troposphere are the in situ photochemical prioglu from anthropogenic and natural
precursors, and the downwards transport of strhysp Q. Being a strong pollutant, a major
reactive species and an important greenhouse glas upper tropospherez @ of highest interest

for air quality, atmospheric chemistry and radiatfercing studies. Thanks to its long lifetime

(several weeks) relatively to transport timescaldke free troposphere (Fusco and Logan, 2003),
1
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Oz also contributes to large-scale transport of pioltu far from source regions with further
impacts on global air quality (e.g. Stohl et ai02; Parrish et al., 2012) and climate. Monitoring
and understanding the time evolution of troposgh@siat a global scale is, therefore, crucial to
apprehend future climate changes. Neverthelessiesof limitations make Qrends particularly
challenging to retrieve and to interpret.

Since the 1980s, while thes@recursors anthropogenic emissions have increasddshifted
equatorward in the developing countries (Zhand.eP@16), extensive campaigns and routine in
situ and remote measurements at specific urbamumabsites have provided long-term but sparse
datasets of tropospherie @.g. Cooper et al., 2014 and references thefdltraviolet and Visible
(UVIVIS) atmospheric sounders onboard satellitesigle tropospheric ©measurements with a
much wider coverage, but they result either frodirgct methods (e.g. Fishman et al., 2005) or
from direct retrievals which are limited by coaxastical resolution (Liu et al., 2010). All these
datasets also suffer from a lack of homogeneitgims of measurement methods (instrument and
algorithm) and spatio-temporal samplings (e.g. Ddwget al.,, 2011). Those limitations, in
addition to the large natural inter-annual variépillAV) and decadal variations in tropospheric
Oz levels (due to large-scale dynamical modespi@iations and to changes in stratosphetic O
in stratosphere-troposphere exchanges, in precamsissions and in their geographical patterns),
introduce strong biases in trends determined frolependent studies and datasets (e.g. Zbinden
et al., 2006; Thouret et al., 2006; Logan et &12; Parrish et al., 2012 and references therein).
As a consequence, determining accurate trendsresqai long period of high density and
homogeneous measurements (e.g. Payne et al., 2017).

Such long-term datasets are now becoming obtairvaitihethe new generation of nadir-looking
and polar-orbiting instruments measuring in thertreé infrared region. In particular, about one
decade of @profile measurements, with a good sensitivityhi@ troposphere independently from
the layers above, is now available from the IASfrdred Atmospheric Sounding Interferometer)
sounder aboard the European Metop platforms, afigwo monitor regional and global variations
in tropospheric ®@levels (e.g. Dufour et al., 2012; Safieddine et2013; Wespes et al., 2016).

In this study, we examine the troposphericddanges behind the natural 1AV as measured by
IASI over January 2008-May 2017. To that end, we the approach described in Wespes et al.
(2017), which relies on a multi-linear regressiMLR) procedure, for accurately differentiating
trends from other sources o @ariations; the latter being robustly identifieddaquantified in
that companion study. In Section 2, we briefly eswithe IASI mission and the tropospheri¢ O
product, and we shortly describe the multivariatelels (annual or seasonal) that we use for fitting
the daily Q time series. In Section 3, after verifying thefpenance of the MLR models over the
available IASI dataset, we evaluate the feasibitiycapture and retrieve significant trend
characteristics, apart from naturas @ependencies, by performing trend sensitivity istsidin

Section 4, we present and discuss the global biigions of the @trends estimated from IASI in
2
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the troposphere. The focus is given in summer awerdownwind anthropogenic polluted areas
of the N.H. where the possibility to infer signdiut trends from the first ~9 years of available IAS
measurements is demonstrated. Finally, theCO correlations, enhancement ratios and
covariance are examined for characterizing theron§the air masses in regions of positive and
negative trends.

21ASI O3z measurements and multivariate regression

The IASI instrument is a nadir-viewing Fourier tséorm spectrometer that records the thermal
infrared emission of the Earth-atmosphere systeme®n 645 and 2760 chfrom the polar Sun-
synchronous orbiting meteorological Metop seriessafellites. Metop-A and —B have been
successively launched in October 2006 and Septegiig. The third and last launch is planned
in 2018 with Metop-C to ensure homogeneous long+i&SI measurements. The measurements
are taken every 50 km along the track of the stgelt nadir and over a swath of 2200 km across
track, with a field of view of four simultaneousotprints of 12 km at nadir, which provides global
coverage of the Earth twice a day (at 9:30 AM aMirRean local solar time). The instrument
presents a good spectral resolution and a low maetiac noise, which allows the retrieval of
numerous gas-phase species in the troposphere&C{ergaux et al., 2009, and references therein;
Hilton et al., 2012; Clarisse et al., 2011).

In this paper, we use the FORLEk@rofiles (Fast Optimal Retrievals on Layers forSIA
processing chain set up at ULB; v20151001) retddwem the IASI-A (aboard Metop-A) daytime
measurements (defined with a solar zenith anglestsun < 80°) which result from a good spectral
fit (determined here by quality flags on biasedstmped residuals, suspect averaging kernels,
maximum number of iteration exceeded,...). Theseilpofire characterized by a good vertical
sensitivity to the troposphere and the stratospfeege Wespes et al., 2017). The FORLI algorithm
relies on a fast radiative transfer and retrievathudology based on the Optimal Estimation
Method (Rodgers, 2000) and is fully described imthhans et al. (2012). The FORLE@rofiles,
which are retrieved on 40 constant vertical layeym surface up to 40 km and an additional 40-
60 km one, have already undergone thorough chaizatien and validation exercises (e.g. Anton
et al., 2011; Dufour et al., 2012; Gazeaux et24112; Hurtmans et al., 2012; Parrington et al.,
2012; Pommier et al., 2012; Scannell et al., 2@ejen et al., 2014; Boynard et al., 2016; Wespes
et al., 2016; Keppens et al. 2017; Boynard et28117). They demonstrated a good degree of
accuracy, of precision and of vertical sensitivitth no drift, to capture the large-scale dynamical
modes of @ variability in the troposphere independently frtime layers above (Wespes et al.,
2017), with the possibility to further differentaibng-term @changes in the troposphere (Wespes
et al., 2016).

For this purpose, we focus, in this work, on adsgheric column ranging from ground to 300 hPa
that includes the altitude of maximum sensitivifyl&SI in the troposphere (usually between 4

3
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and 8 km altitude), limits as much as possibleitiflaences of the stratospherig @nd that was
shown in Wespes et al. (2017) to exhibit indepenhdi@seasonalized anomalies/dynamical
processes from those in the stratospheric layere Stratospheric contribution into the
tropospheric @ columns have been previously estimated in Wespes. €2016) as ranging
between 30% and 65% depending on the region anseimon with the smallest contribution as
well as the largest sensitivity in the northern 4faititudes in spring-summer where the O
variations, hence, mainly originate from the trquuesre. We use the same MLR model (in its
annual or its seasonal formulation) as the oneldped in the companion paper (see Eq.1 and 2;
Section 2.2 in Wespes et al., 2017), which inclualssries of geophysical variables in addition to
a linear trend (LT) term. The MLR which is perfortnhasing an iterative stepwise backward
elimination approach to retain the most relevaplaxatory variables (called “proxies”) at the end
of the iterations (e.g. Mader et al., 2007) is &ggpbn the daily IASI @time series. The main
selected proxies used to account for the natunahti@ens in Q are namely the QBO (Quasi-
Biennial Oscillation), the NAO (North Atlantic Odleition) and the ENSO (El Nifio—Southern
Oscillation) (cfr Table 1 in Wespes et al. (20191 the exhaustive list of the used proxies). Their
associated standard errors are estimated fronotfeiance matrix of the regression coefficients
and are corrected to take into account the uncgytaiue to the autocorrelation of the noise
residual (see Eq. 3 in Wespes et al. (2016)). Dmeneon rule that the regression coefficients are
significant if they are greater in magnitude thatinZes their standard errors is applied (95%
confidence limits defined bys2evel). The MLR model was found to give a goodresgntation

of the IASI Q records in the troposphere over 2008-2016, allgwis to identify/quantify the
main Q drivers with marked regional differences in thgression coefficients. Time-lags of 2
and 4 months for ENSO are also included hereaiténé MLR model to account for a large but
delayed impact of ENSO on mid- and high latitudes&iations far from the Equatorial Pacific
where the ENSO signal originates (Wespes et alL7R0

3 Regression performance and sensitivity to trend

In this section, we first verify the performancetioé MLR models (annual and seasonal; in terms
of residual errors and variation explained by thadet) to globally reproduce the time evolution
of Oz records over the entire studied period (Januaf820May 2017). Based on this, we then
investigate the statistical relevance for a tretudys from 1ASI in the troposphere by examining
the sensitivity of the pair IASI-MLR to the retried LT term.

Figure 1 presents the seasonal distributions giospheric @ measured by IASI averaged over
January 2008 — May 2017 (left panels), along wiign toot-mean-squared error of the seasonal
regression fitRMSE in DU; middle panels) and the contribution of fiteed seasonal model into

Fitted_mode|
the IASI G time series (in %; right panels), calculate $s (O (t))(t))wherecs is the standard
g 3
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deviation relative to the regression models anth&lASI G time series. These two statistical
parameters help to evaluate how well the fitted ehakplains the variability in the I1ASI O
observations. The seasonal patterns pfim@asurements are close to those reported in Wespes
al. (2017) for a shorter period (see Section 2d 34 in Wespes et al. (2017) for a detailed
description of the distributions) and they cleatpw, for instance, highs®alues over the highly
populated areas of Asia in summer. The distribstivom Fig.1 show that the model reproduces
between 35% and 90% of the dailyw@riation captured by IASI and that the residuedis varies
between 0.01 DU and 5 DU (i.e. tRMSErelative to the IASI @time series are of ~15% on
global average and vary between 10% in the N.Hummer and 30% in specific tropical regions).
On an annual basis (data not shown), the modeh&gh large fraction of the variation in the
IASI Os dataset (from ~45% to ~85%) and fREISEare lower than 4.5 DU everywhere (~3 DU
on the global average). The relatR& SEare less than 1% in almost all situations indigathe
absence of bias.

The seasonal distributions of the contributionhe total variations in TOCs from the adjusted
harmonic terms and explanatory variables, whicloactcfor the “natural” variability, and from
the LT term are shown in Fig. 2 (left and right elsnrespectively). The crosses in the LT panels
indicate that the trend estimate in the grid cetion-significant in the 95% confidence limits (2
level) when accounting for the autocorrelationhia hoise residual at the end of the elimination
procedure. While the large influence of the sedseagations and of the main drivers - namely
ENSO, NAO and QBO - on the IASI:@ecords has been clearly attested in Wespes @0dl7),

we demonstrate with Fig.2 that the LT also conteésiconsiderably to thes@ariations detected
by IASI in the troposphere. The LT contribution geadly ranges from 15% to 50%, with the
largest values (~30-50%) being observed at mid-tatitudes of the S.H. (30°S-70°S) and of the
N.H. (~45°N-70°N) in summer. In the S.H., they associated with the smallest tropospheric O
columns (Fig.1; left panels) and the smallest retontributions (<25%; left panels), while in the
N.H. summer, they interestingly correspond to laF@&Cs, large natural contributions (~50-60%)
and the smalleRRMSE(<12 % or <3 DU). From the annual regression mdtelnatural variation
and the trend contribute respectively for 30-85% ap to 40% to the total variation in TOCs.

In Fig.3, we further investigate the robustnesshefestimated trends by performing sensitivity
tests in regions of significant trend contributiqesy. in the N.H. mid-latitudes in summer; cfr
Fig.2). The ~9-year time series of IAS} @aily averages (dark blue) along with the resinéim

the seasonal regression model with and withouuding the LT term in the model (light blue and
orange lines, respectively) are represented iridheow panel for one specific location (Fig.3a
and b; highlighted by a blue circle in the JJA pand-ig.4). The second row panel provides the
deseasonalised IASI (dark blue line) and fittecetiseries (calculated by subtracting the adjusted
seasonal cycle from the time series) resulting ftoenadjustment with and without including the
LT term in the MLR model (light blue and orangeeln respectively). The differences between
the fitted models with and without LT are showrthie third rows (pink lines). They match fairly

5
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well the adjusted trend over the IASI period (8w panel, grey lines; the trend and REISE
values are also indicated) and the adjustment witHol leads to larger residuals (e.g.
RMSEjia wio_L=3.25 DUvs RMSE A with L7=3.14 DU in summer). This result demonstrates the
possibility to capture trend information from ~%ye of IASI-MLR with only some compensation
effects by the other explanatory variables, cogttarwhat was observed when considering a
shorter period of measurements or a lesser tempamapling (i.e. monthly dataset; e.g. Wespes
etal., 2016). It is also worth to mention that @echanges calculated over the whole IASI dataset
in summer are larger than tRMSEof the model residuals (increase of 5.39+1.86 \BBMSE

of 3.14 DU), underlying the statistical relevanéérend estimates.

The robustness of the adjusted trend is verifiethatglobal scale in Fig.4 which represents the
seasonal distributions of the relative differenocgheRMSEwith and without including LT in the
MLR model, calculated asRMSEwio_L1— RMSEuith_L1)/RMSEwith_LT*100] (in %). An increase

in the RMSEwhen excluding LT from the MLR is observed almestrywhere in regions of
significant trend contributions (Fig.2), especiatiymid-high latitudes of the S.H. and of the N.H.
in summer where it reaches 10%. This result ind#tat adjusting LT improves the performance
of the model and, hence, that a trend signal id vagtured by IASI at a regional scale in the
troposphere. From the annual model, the increagbamRMSEonly reaches 5% at mid-high
latitudes of the S.H. (data not shown). In regiohaeak or non-significant trend contribution (see
crosses in Fig.2), no improvement is logically fdun

4 O3z trend over 2008-2017
4.1 Annual and seasonal trends

The annual and the seasonal distributions of thedfiLT terms which are retained in the annual
and the seasonal MLR models by the stepwise eliiimarocedure are respectively represented
in Fig. 5 (@) and (b) (in DU/yr). Generally, thed¥high latitudes of both hemispheres and, more
particularly, the N.H. mid-latitudes in summer ralvsgignificant negative trends, while the tropics
are mainly characterized by non-significant or weigkificant trends. Even if trends in emissions
have already been able to qualitatively explain snezd tropospheric £xrends over specific
regions, the magnitude and the patterns of thed¢r@onsiderably vary between independent
measurement datasets (e.g. Cooper et al.,, 2014T@%®R report — Tropospheric Ozone
Assessment Report: Present-day distribution amdi$ref tropospheric ozone relevant to climate
and global atmospheric chemistry model evaluati@ad Authors: A. Gaudel and O.R. Cooper —
coordinated by the International Global Atmosphe@bemistry Project and available on
http://www.igacproject.org/activities/ TOAR and suitted to Elementa; and references therein)
for the reasons discussed in Section 1 and theyatreeproduced by model simulations (e.g.
Jonson et al., 2006; Cooper et al., 2010; Logaah. €2012; Wilson et al., 2012; Hess et al., 2013;
and references therein). As a result, interpretidgusted trends at the global scale remains
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difficult. Nevertheless, several of the statistigadignificant features observed in Fig.5 show,
interestingly, qualitative consistency with respctecent published findings:

The S.H. tropical region extending from the Amazontropical eastern Indian Ocean
seems to indicate a general increase with an arneradl of ~0.13+0.10 DU/yr (i.e.
1.20+0.93 DU over the IASI measurement period)pideghe large 1AV in TOCs which
characterizes the tropics and which likely explahmes high frequency of non-significant
trends. Enhanced :(evels over that region have already been analysegrevious
periods (e.g. Logan et al., 1985, 1986; Fishmah £1991; Moxim et al., 2000; Thompson
et al., 2000, 2007; Sauvage et al., 2006, 2007hibadd et al., 2017). For instance, the
larger Q enhancement of ~0.33+0.23 DU/yr (i.e. 3.1+2.2 DAdrahe whole 1ASI period)
stretching from southern Africa to Australia oviee north-east of Madagascar during the
austral winter-spring likely originates from larddV in the subtropical jet-related
stratosphere—troposphere exchanges which havefdneaah to primarily contribute to the
tropospheric ®@trends over that region (Liu et al., 2016; 20N@vertheless, this finding
should be mitigated by the fact that the trend &dluthe S.H. tropics is of the same
magnitude as thRMSEof the regression residuals (~2-4.5 DU; see Fig.1)

The trends over the South-East Asia are mostlysigmificant and vary by season. In
spring-summer, some grid cells in India, in maidla@hina and eastwards downwind
China exhibit significant positive trends reachi45 DU/yr (i.e. ~4.2 DU over the IASI
measurement period). This tends to indicate thattitpospheric ®increases resulting
from the strong positive trend in Asian emissiomsrahe past decades (e.g. Zhao et al.,
2013; Cooper et al., 2014; Zhang et al., 2016; Gehel., 2017; Tarasick et al., 2017; and
references therein) persists through 2008-2017itdetbie recent decrease in recursor
emissions recorded in China after 2011 (e.g. Durataal., 2016; Krotkov et al., 2016;
Miyazaki et al., 2017; Van der A et al. 2017). Thisuld indicate that this decrease is
probably too recent/weak to recover the 2008I&vels over the entire region. Note,
however, that this finding has to be taken cargfgiven the large model residuaRMSE

of ~2-4 DU; cfr Section 3, Fig.1) over that regid¢finally, the large uncertainty in trend
estimation over the South-East Asia might reflabis large 1AV in biomass-burning
emissions and lightning NGources, in addition to the recent changes insamis.

The mid- and high latitudes of the S.H. show cfestterns of negative trends, all over the
year and in a more pronounced manner during wepeng, with larger amplitudes than
those of theRMSEvalues (~-0.35+£0.11 DU/yr on average in the 358%S6band; i.e. a
trend amplitude of ~|3.3|£1.0 DU over the studiedqud vs a RMSEvalue of ~2.5 DU).
These significant negative trends in the S.H. aml o explain but, considering the
stratospheric contribution into the tropospherituoms (natural and artificial due to the

limited IASI vertical sensitivity) in the mid-highatitudes of the S.H. (~40-60%; see
7
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supplementary materials in Wespes et al., 2016) taednegative significant trends

previously reported from IASI in the UTLS/low stoaphere in the 30°S-50°S band, they
could be in line with those derived by Zeng ef{2017) in the UTLS for a clean rural site

of S.H. (Lauder, New Zealand) and which mainly mrdge from increasing tropopause

height and @depleting substances.

In the N.H., a band-like pattern of negative treisdsbserved in the 40°N-75°N latitudes
covering Europe and North America, especially dygommer. Averaged annual trend of
—0.37+0.18 DU/yr and summer trend of —0.47+0.16 ypUi.e. -3.42+0.65 DU and -
4.31+1.47 DU, respectively, from January 2008 toyMe®17) are estimated in that
latitudinal band. These trend values are signifigalarger than theRMSEof the MLR
model (<3.5 DU; cfr Section 3, Fig.1). Interestingboth the annual and summer trends
are amplified in comparison with the ones calcaldtethe N.H. mid-latitudes over the
2008-2013 period of IASI measurements (-0.19+0.0ByDand -0.30+0.10 DU/yr for the
annual and the summer trends, respectively, caemlila the 30°N-50°N band; see Wespes
et al. (2016)). This finding is in agreement witleyious studies which point out a possible
leveling off of tropospheric &in summer due to the decline of anthropogenip@cursor
emissions observed since 2010-2011 in North AmgiicaVestern Europe and also in
some regions of China (e.g. Cooper et al., 201@2200gan et al., 2012; Parrish et al.,
2012; Oltmans et al., 2013; Simon et al., 2015;hirald et al., 2017; Miyazaki et al.,
2017). Archibald et al. (2017) recently reportechet decrease of ~5% in the global
anthropogenic N@emissions in the 30°N-90°N latitude band, whicbdesistent with the
annual significant negative trend of -0.32+0.18 aUbr Oz estimated from IASI in that
band.

4.2 Expected year for trend detection

In this section, we further verify that it is indepossible to infer, from the studied IASI period,
the significant negative trend derived in the 475N band in summer (~|0.5| DU/yr on average,
see Section 4.1) by determining the expected yean fvhich such a trend amplitude would be
detectable at a global scale. This is achievedsbsnating the minimum duration (with probability
0.90) of the IASI @ measurements that would be required to detecerad tof a specified
magnitude, and its 95% confidence level, followihg formalism developed in Tiao et al. (1990)
and in Weatherhead et al. (1998):

73

N | 330, 10 Eq ()
\Tyr 1-o

CL, =[N @®N @*® Eq (2)



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-904 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 23 November 2017 and Physics

(© Author(s) 2017. CC BY 4.0 License.

311
312

313
314

315
316
317

318
319

320

321
322
323

324
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341
342
343
344

Discussions

Where N’ is the number of the required yeats, is the standard deviation of the autoregressive
noise residuak,, 7, is the magnitude of the trend per yedr,is the lag-1 autocorrelation of the
noise. The magnitude of the variation and of th®aarrelation in the noise residuals are taken
into account for a better precision on the trertirege. Given that large variance3) and large
positive autocorrelatiortP of the noise induce small signal-to-noise ratid dong trend-like
segments in the dataset, respectively, these tvemrpers increase the number of years that would
be required for detecting a specified trer@l. .is the 95% confidence limits which is not
symmetric aroundN"and depends onB, an estimated uncertainty factor calculated as
4 [1+o
3/DV1-o

in ® (the uncertainty ino, being negligible given that only a few years ofedare needed to

, with D the number of days in the IASI datasets, whicloants for the uncertainty

estimate it; cfr Weatherhead et al. (1998)). Assult, based on the available IASI-A and proxies
datasets and assuming that the MLR model usedsistildy is accurate, we estimate, in Fig. 6 (a)
and (b), the expected year when ant®nd amplitude of |5| DU per decade (r.g~ 0.5 DU/yr

which corresponds to the averaged absolute valtheditted negative trends in the N.H. summer;
see Fig.5b) is detectable, and its associated nadudomfidence limit, respectively. The results in
Fig. 6 clearly demonstrates the possibility toiipnfeom the available IASI dataset, such significan
trends in the mid- and high latitudes of the NiHsimmer and fall (trend detectable from ~2016-
2017 with an uncertainty of ~6-9 months; cfr Fig.8bn the contrary, the tropical regions and the
N.H. in winter-spring would require additional ~n@nths to 6 years of measurements to detect
an amplitude of |0.5] DU/yr (trend significant oflgm ~ 2017 — 2023 or after depending on the
location and the season). Note also that the stsintegative trends (up to -0.85 DU/yr, irg.=

|0.85| DU/yr, see Fig.5b) observed in specificargiof the N.H. mid-latitudes would only require
~6 years of IASI measurements for being detectbd.rid- and high latitudes of the S.H. would
require the shortest period of IASI measurementi&ecting a specified trend, with only ~7 years
+ 6 months of IASI measurements to detect a |0ByExrend (trend detectable from ~2015). That
band-like pattern in the S.H. corresponds to tg@rewith the weakest IAV and contribution from
large-scale dynamical modes of variability in th&I] TOCs (see Section 3, Fig.1 and 2), which
translates into smaly?> and ®. Note however that an additional few months of lldSta are
required to confirm the smaller negative trend f.35 DU/yr measured on average in the S.H.
(see Fig.5; a period ~9 years + 6 months being ssacg to detect a trend amplitude of |3.5]
DU/dec). Given that larger, means large noise residual in the IAS| data, éggons of short or

long required measurement period coincide, as ¢ggewell with the small or higRMSEvalues
of the regression residuals (see Section 3, Fig. 1)
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The regions of the longest measurement periodsreztjun the tropics for a trend detection (up to
~16 years of IASI data) correspond to known pagtehwidespread high £D(a) above intense
biomass burnings in Amazonia and eastwards aa@sisal Atlantic (Logan et al., 1986; Fishman
etal., 1991; Moxim et al., 2000; Thompson et2000, 2007; Sauvage et al., 2007), (b) eastwards
Africa across the South Indian Ocean which is stihfje large variations in the stratospheric
influences during the winter-spring austral periddA-SON) (Liu et al., 2016; 2017), (c)
Eastwards Africa across the North Indian Oceannttial likely due to large lightning NO
emissions above central Africa during the wet seasssociated with the northeastward jet
conducting a so-called “Qiver” (Tocquer et al., 2015) and (d) above regiof positive ENSO
“chemical” effect in Equatorial Asia/Australia ardstwards above northern and southern tropical
regions (Wespes et al., 2016) explained by reduaedalls and biomass fires during EIl Nifio
conditions (e.g. Worden et al., 2013). In fact, tnolsthese patterns (a, b and d) are closely
connected with strong El- Nifio events which extémel duration of the dry season and cause
severe droughts, producing intense biomass buemmgsions, for instance, over South America
(e.g. Chenetal., 2011; Lewis et al., 2011) anatiSAsia/Australia (e.g. Oman et al., 2013; Valks
et al., 2014; Ziemke et al., 2015), and which pérthe tropospheric circulation by increasing the
transport of stratospherics@to the troposphere (e.g. Voulgarakis et al.,2Meu et al., 2014)
and the transport of biomass burning air massabgdndian Ocean (Zhang et al., 2012). In
summary, these large-scale indirect ENSO-relateidti@ns in tropospheric £and the lightning
NOx impact on @, which are not accounted for in the MLR by spediépresentative proxies, are
misrepresented in the regression models. They ethrge noise residuals, i.e. large, and,

hence, extends the time period needed to deteehd bf any given magnitude.

Figure 6, finally, suggest that a long duratioraliso required, especially in summer, above and
east of China to quantify the anthropogenic immacthe local TOC changes: additional 3+1.5
years or 51.5 years for a given |5| or |3.5| Dtltdend are respectively calculated. This result
could be explained by large perturbations in TO@hiced by recent decreases after decades of
almost constant increases in surface emissionsinaGe.g. Cohen et al., 2017; Miyazaki et al.,
2017).

4.3 Multi-linear vssingle linear model

Even if MLR have already been used for extractiegds in stratospheric and totad @lumns
(e.g. Mader et al., 2007; Frossard et al., 2018¢&iet al., 2013; Knibbe et al., 2014), singledin
regressions (SLR) without discriminating the nat@chemical and dynamical) factors describing
the Q& variability are still commonly used (e.g. Cooper a., 2014; the TOAR report —
Tropospheric Ozone Assessment Report: Presentistaipdtion and trends of tropospheric ozone
relevant to climate and global atmospheric chemistodel evaluation, Lead Authors: A. Gaudel
and O.R. Cooper — and references therein). Theyhamever, suspected to contribute to trend

10
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biases retrieved between independent measurenheaiddition to the time-varying instrumental
biases, trend biases can also be related to diffesein the spatial and the temporal samplings
(e.g. Doughty et al., 2011; Saunois et al., 2018;dt al., 2015) and in the vertical sensitivity of
the measurements. The later artificially alters tiearacteristics of the sounded layer by
contaminations from the above and the below lalgading to a mixing of the trend but also of
the natural characteristics originating from thediéferent layers (e.g. troposphere and
stratosphere). The differences in the studied gexial in the spatio-temporal sampling might also
imply differences in the natural influence on theasured @variations. While the impact of the
natural contribution is taken into account in theRMmodel, it might introduce an additional bias
in the trend determined from SLR, making furthealtdnging to compare trends estimated from
a series of independent measurements.

The limitation in using a SLR instead of a MLR mbfix determining trends is explored here by
comparing the seasonal distributions of the tressdisnated from MLR (see Fig. 5 (b) in Section
4.1.) and from SLR (presented in Fig.7). The higli&$erences in the fitted trends derived from
the two methods are found in the tropics and inescegions of the mid-latitudes of the N.H. They
likely result from overlaps between the LT term atlder covariates. For instance, the regions of
the high significant SLR trends (~0.3-0.5 DU/yr p¥ie tropical western and middle Pacific)
during the period extending from September to Mayamm the regions of strong El Nifio/Southern
Oscillation influence (cfr Fig. 8 and 12 in Wesgsl., 2016). On the contrary, the MLR model
lends generally weak significant negative or nagnsicant trends in the Pacific Nifio region
during that period and it would even need additiorato 4 years of IASI measurements for
detecting the fitted SLR trends (see Section aboleg effect of ENSO in overestimating the
fitted SLR trend is further illustrated on Fig. 8ieh represents the time series afdbserved by
IASI and adjusted by the annual MLR model (top radang with the deseasonalized times series
(middle row) and the fitted SLR and MLR trends (bot row). The fitted signal of the ENSO
proxy from the MLR regression (calculated X following Wespes et al. (2017)) is also

norm, j
represented (bottom row). That example clearly shthat the ENSO influence is considerably
compensated by the adjustment of the linear trenthé SLR regression (annual trend of -
0.29+0.028 DU/yr from SLR vs -0.13+0.092 DUl/yr fromMLR for that example). Finally,
differences between the SLR and the MLR modelsatése observed in the region of strong
positive NAO influence over the Icelandic/Arctiggien during MAM (see Wespes et al. (2016)
for a description of the NAO-relatecs ©hanges). On the contrary, the sub-tropical SxHibé
similar seasonal patterns of negative trends froth the SLR and the MLR. It results from the
weak natural IAV and contributions in troposphéicabove that region (see Section 3, Fig. 1 and
2), which, hence, limits the compensation effects.

In summary, if considering a long period of meaments is usually recommended in SLR study
to pass over the dynamical cycles and, hencepdrdiscriminating their influences from trends,

11
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we show that it is not accurate enough considettiay some dynamics have irregular or no
particular periodicity (e.g. NAO, ENSO). Furtherrapraccurate satellite measurements of
tropospheric @at a global scale are quite recent, limiting teegd of available and comparable

datasets (e.g. Payne et al., 2017). As a conseguere support here that using a reliable
multivariate regression model based on geophysiaehmeters and adapted for each specific
sounded layer is a robust method for different@tn“true” trend from any other sources of

variability and, hence, that it should help in fegsa trend differences between independent
datasets.

4.4 Continental influence

In this section, we use the capabilities of IASkbmultaneously measures@nd CO in order (1)

to differentiate tropospheric and stratosphericvasses, (2) to identify the regions influenced by
the continental export/intercontinental transpé®epollution and (3) to evaluate that continental
influence on tropospheric@rends as observed by IASI. Similar tracer cotietes between CO
and Q have already been used to give insight into thetqahemical @ enhancement in air
pollution transport (e.g. Parrish et al., 1993;tBeri et al., 2005). However, there are only a few
studies using global satellite data for this pugp(ghang et al., 2006; Voulgarakis et al., 2010;
Kim et al., 2013) and the analysis of the @D relationship for better understanding the origji

Oz trends in the troposphere has, to the best okmowledge, never been explored.

We provide in Fig.9a and 9b the seasonal pattertteeo-CO correlations (referred asico)
and of thedOs/dCO regression slopes calculated in the tropospfiena the surface to 300 hPa)
over the studied IASI period (January 2008 — Ma¥7)0ThedOs/dCO regression slopes, which
represent the so-called>@0O enhancement ratio, is used to evaluate theophemical @
production in continental outflow regions. ThesRo and thedOs/dCO distributions are similar
and clearly show regional and seasonal differeiitébe strength of the $CO relationships.
Regions of positive and negative correlations adleavdiscriminate air masses characterized by
photochemical ®@production from precursors (including CO) or CGtrdection (both identified
by positive Rs.co from those characterized bys@oss (chemical destruction or surface
deposition) or by strong stratospheric contamimetigboth identified by negative oRco).
Negative Rs.coanddOs/dCO are measured in the high latitudes of both helmeies all over the
year, but more specifically at high latitudes oé t8.H. in summer-fall (with &-co <-0.25 on
averages in DJF and MMA). If the high latitudes eng@nce more ©destruction than the low
latitudes due to a lack of sunlight, the negatweelations for the high latitude regions mighials
reflect air masses originating from/characterizing stratosphere due to natural intrusion or to
artificial mixing with the troposphere introducey thhe limited vertical sensitivity of IASI in the
highest latitudes (see Wespes et al., 2016). Tremesses are likely at the origin of the band-like
pattern of negative trends in the S.H. discusse&entions 3 and 4.1. Negativerdro and
dOs/dCO are also found above the Caribbean, the AradriinBula and the North Indian Ocean in
12
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JJA/SON and the South Atlantic in DJF. They arériea with Kim et al. (2013) and they likely
reflect the influence of lightning NQwhich produce ®@but also OH oxidizing CO (e.g. Sauvage
et al., 2007; Labrador et al., 2004).

Strong positive correlations are identified in b&.co anddOs/dCO patterns over the tropical
regions and for mid-latitudes of both Hemisphenasnd) the peak of photochemistry in summer.
Maxima (Rb3-co >0.8 anddOs/dC0O>0.5) are detected in continental pollution avtflregions in
the N.H., especially downwind South-East Asia amgrothe South Africa/Amazonia/South
Atlantic region. These £CO correlation patterns from IASI are fully consig with those
measured by TES (Zhang et al., 2006; 2008; Voukiget al., 2010) and by OMI/AIRS (Kim et
al., 2013), which have been interpreted with gldbaM’s as originating from Asian pollution
influence and from combustion sources includingra@ss burning, respectively. The high positive
Ros-cofound in JJA at mid-latitudes of the N.H. are d&td in a lesser extent in DJF reflecting
the decreasing photochemistry. It is also worthptant out in Fig. 9 the clear hemispheric
differences in the &.coanddOs/dCO values at mid-high latitudes and, more partidylghe shift

of positive Ry3.coanddOz/dCO towards higher latitudes of the N.H. during stenie.g. Rsco=
0.24 in summevs0.038 in spring in the 35°N-55°N band). As a copusnce, these results suggest
that the band-like pattern of negative trends megkby IASI in summer might substantially
reflect the continental pollution influence andnbe, that it could result from the decline of
anthropogenic @precursor emissions. Nevertheless, interpretiggcO correlations in the free
troposphere, especially in photochemically ageduioh plumes far from the emission sources
towards the highest latitudes, remains complicatedixing of continental combustion outflow
with stratospheric air masses, in addition to bamligd dynamic and photochemistry (e.g. Liang
et al., 2007).

Finally, we also provide in Fig.9c global patteafi©s-CO covariances (CO¥-cq. They confirm
the band-like pattern of the weak natural variatiaptured in the mid-latitudes S.H. (see Sections
3 and 4.1) and help identifying the region downwigdst China, the northern mid-latitudes
pollution outflow and the South tropical regionthe ones with the highest pollution variability,
in addition to the strongestz@O correlations. Finally, the particularly stropgsitive Q-CO
relationship in terms of &.co, dOz/dCO and COVs.co measured over and downwind North
India/East China in summer in comparison with the measured downwind East US and over
Europe indicate that the South-East Asia experitite most of the intense pollution episodes
(COVos-co> 40x132 moP.cnt*) with the largest @enhancement(Qs/dCO > 0.5) over the last
decade, explaining the significant increase in 1&Bllevels (see Section 4.1) despite the net
decrease in §precursor emissions recorded in China after 28Xj. Cohen et al., 2017; Miyazaki
etal., 2017).

5 Conclusions

13
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In this study, we have explored, for the first tiniee possibility to infer significant trends in
tropospheric @ from the first ~10 years (January 2008 — May 20a¥)the IASI daily
measurements at a global scale. To this end, Mldkyses have been performed by applying a
multivariate regression model (annual and seadonaulations), including a linear trend term in
addition to chemical and dynamical proxies, ondgidlmean tropospheric ozone time series. This
work follows on the analysis of the main dynamidabers of Q variations measured by IASI,
which was recently published in Wespes et al. (200/& have first verified the performance of
the MLR models in explaining the variations in gidime series over the whole studied period. In
particular, we have shown that the model reprodadasge part of the fvariations (>70%) with
small residuals errorsRMSE of ~10%) in the northern latitudes in summer. Wavéh then
performed @ trend sensitivity tests to verify the possibility capture trend characteristics
independently from natural variations. Despite weak contribution from the trend to the total
variation in TOCs at the global scale, the resdisonstrate the possibility to discriminate
significant trends from the explanatory variabkspecially in summer at mid-high latitudes of the
N.H. (~45°N-70°N) where the contribution and thenstvity of the trend are the largest
(contribution of ~30-50% and a ~10% increase inRMSEexcluding the LT in the model). We
then focused on the interpretation of the globahdrestimates. We have found an interesting
significant positive trends in the S.H. tropicadjien extending from the Amazon to the tropical
eastern Indian Ocean and over South-East Asia rimgspummer which should however be
carefully considered given the higMSEof the regression residuals in these regions.MbR
analysis reveals a band-like pattern of high sigaift negative trends in the N.H. mid-high
latitudes in summer (—0.47+0.16 DU/yr on averagehi@ 45°N-70°N band). The statistical
significance of such trend estimates is furtheifieel by estimatingbased on the autocorrelation
and on the variance of the noise residuals, thénmim number of years of IASI measurements
that are required to detect a trend of a |5| DUfdagnitude. The results clearly demonstrate the
possibility to determine such a trend amplituderfithe available IASI dataset and the used MLR
model at northern mid-high latitudes in summer, lemuch larger measurement periods are
necessary elsewhere. In particular, the regionth@flongest required period highlight, in the
tropics, a series of known processes that are lgloséated to the EI-Nifio dynamic, which
underlies the lack of associated parameterizatiorise MLR model. The importance of using
reliable MLR models in understanding large-scatev@riations and in determining trends is
further explored by comparing the trends inferreshf MLR and SLR, the latter being still
commonly used by the international community. Thmparison has clearly highlighted the gain
of MLR in attributing the trend-like segments intural variations, such as ENSO, to the right
processes and, hence, in avoiding misinterpretatiotapparent” trends in the measurement
datasets. Finally, by exploiting the simultaneond @ertically-resolved ©and CO measurements
from IASI, we have provided and used the-@D correlations in the troposphere to help in
determining the origins/characteristics of the raamsses with negative or positive trends. The
distributions have allowed us to identify, in paular, strong positive £CO correlations,

regression slopes and covariance in the N.H. ntitities and northward during summer, which
14



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-904 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 23 November 2017 and Physics

(© Author(s) 2017. CC BY 4.0 License.

543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

565
566
567
568
569

570
571
572
573
574
575
576

577

Discussions

suggests a continental pollution influence in thid Nband-like pattern of high significant negative
trends recorded by IASI and, hence, a direct effettie policy measures taken to reduce emissions
of Oz precursor species.

This study supports overall the importance of usiigh density and long term satellite records,
such as those provided by IASI, for accurately wheit@ng trends in troposphericzO as required
by the scientific community e.g. in the Intergovaental Panel on Climate Change (IPCC, 2013)
- and for further resolving trend biases betweatependent datasets (Payne et al., 2017; the
TOAR report — Tropospheric Ozone Assessment Repoesent-day distribution and trends of
tropospheric ozone relevant to climate and globmbapheric chemistry model evaluation, Lead
Authors: A. Gaudel and O.R. Cooper). Determinatioith IASI, of robust trends at the global
scale in tropospheric Lwill be achievable in the near future by mergihg homogeneousz0
profiles from the three successive instruments arb®letop-A (2006); -B (2012) and —C (2018)
platforms and from the IASI-Next Generation onbotrd Metop Second Generation series of
satellites (Clerbaux and Crevoisier, 2013; Creenist al., 2014). A long record of tropospheric
Oz measurements will be also assured by the Croskin&ared Sounder (CrIS) onboard the Joint
Polar Satellite System series of satellites.
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level). Note that the scales are different.

17

EGU



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-904 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 23 November 2017

and Physics
(© Author(s) 2017. CC BY 4.0 License. Discussions
|East Europe - 48.75°N / 27, 5°E\ IASI O, obs
o 40 Regres model with LT]
o
§ 530
A S ﬁ,
§- 20 i n\wrm‘ mq d" 1 || "' “" ' J" \
= E I P‘
RMSE = 3.37 DU

10

20
o RMSE, , =3.14 DU
° 10
(]
N
=)
s8¢
Q
8 -0
[+
o

3
- Trend ' =-0.35+/-008DUjyr Trend =058 +-0.20 DUr ' '
(]
E35 o
=)
2w
8o -2
c o
[T=]
SE
E '4

1 1 1 1 | 1 | 1 1
597 Jan-08 Jan-08 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 Jan-17
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